MTH 304: Metric Spaces and Topology

Practice Assignment III: Compactness

- 1. Reading assignment: Read the proofs of following assertions from section 1.12 (ix), (xix), (xxii), (xxiv), (xxvii), & (xxix).
- 2. Show that a compact subspace of a metric space is bounded. Given a counterexample to show that the converse does not hold true.
- 3. Let X be a space, and Y be a compact space.
 - (a) Show that the projection map $\pi_1: X \times Y \to X$ is a closed map.
 - (b) Let Y be Hausdorff space and $f:X\to Y$ be a map. Then f is continuous if, and only if, the graph of f

$$G_f = \{(x, y) \mid (x, y) \in X \times Y \text{ and } y = f(x)\}$$

is a closed subset of $X \times Y$.

- 4. Let $p: X \to Y$ be a continuous surjective map such that each fiber of f is compact (such a map is called a *perfect map*). Show that if Y is compact, then X is compact.
- 5. Show that for $n \geq 1$, S^n is the one point compactification of \mathbb{R}^n .
- 6. In each of the following topologies on \mathbb{R} , determine whether the closed interval [a, b] is compact, limit point compact, sequentially compact, and locally compact.
 - (a) Cofinite topology.
 - (b) Cocomplement topology.
 - (c) \mathbb{R}_{ℓ} .
 - (d) \mathbb{R}_K .
- 7. A space X is a said to *countably compact* if every countable open covering of X has a finite subcovering. Show that in a T_1 space, countable compactness is equivalent to limit point compactness.
- 8. Let (X, d_x) and (Y, d_Y) be metric spaces. A map $f: X \to Y$ is called an *isometry* if

$$d_X(a,b) = d_Y(f(a), f(b)), \, \forall a, b \in X.$$

If X be compact, and $f: X \to Y$ is a surjective isometry, then show that f is a homeomorphism.

- 9. Let G be a topological group.
 - (a) If $A \subset G$ is closed and $B \subset G$ is compact, then show that AB is closed.
 - (b) If $H \leq G$ and H is compact, then show that the quotient map $G \to G/H$ is a closed map.
 - (c) If $H \leq G$, H is compact, and G/H is compact, then show that G is compact.

10. Let (X, d) be a metric space. A map $f : X \to X$ is called a *contraction* if there exists $0 < \alpha < 1$ such that

$$d(x,y) \le \alpha d(f(x), f(y)), \, \forall x, y \in X.$$

Show that a contraction $f: X \to X$ has a fixed point.

- 11. Let X and Y be locally compact Hausdorff spaces, and let $f: X \to Y$ be a homeomorphism.
 - (a) Show that f extends to a homeomorphism of the one point compactifications of X and Y.
 - (b) Show that the one point compactification of \mathbb{N} is homeomorphic to $\{1/n\}_{n\in\mathbb{N}}\cup$ {0}.
- 12. Prove or disprove the following statements.
 - (a) Continuous image of a limit point compact space is limit point compact.
 - (b) Continuous image of a locally compact space is locally compact.
 - (c) Continuous image of a sequentially compact space is sequentially compact.